Variação autoregressiva em movimento média modelo


8.3 Modelos autoregressivos Em um modelo de regressão múltipla, prevemos a variável de interesse usando uma combinação linear de preditores. Em um modelo de autoregressão, preveemos a variável de interesse usando uma combinação linear de valores passados ​​da variável. O termo regressão automática indica que é uma regressão da variável contra si mesma. Assim, um modelo autorregressivo de ordem p pode ser escrito como onde c é constante e et é ruído branco. Isso é como uma regressão múltipla, mas com valores atrasados ​​de yt como preditores. Nós nos referimos a isso como um modelo AR (p). Os modelos autoregressivos são notavelmente flexíveis no tratamento de uma ampla gama de diferentes padrões de séries temporais. As duas séries da Figura 8.5 mostram séries de um modelo AR (1) e um modelo AR (2). Alterar os parâmetros phi1, pontos, phip resulta em diferentes padrões de séries temporais. A variância do termo de erro e apenas alterará a escala da série, não os padrões. Figura 8.5: Dois exemplos de dados de modelos autorregressivos com diferentes parâmetros. À esquerda: AR (1) com yt 18 -0,8y et. Direito: AR (2) com yt 8 ​​1.3y -0.7y et. Em ambos os casos, e normalmente é distribuído ruído branco com zero médio e variância um. Para um modelo AR (1): Quando phi10, yt é equivalente ao ruído branco. Quando phi11 e c0, yt é equivalente a uma caminhada aleatória. Quando phi11 e cne0, yt é equivalente a uma caminhada aleatória com deriva. Quando phi1lt0, yt tende a oscilar entre valores positivos e negativos. Normalmente, restringimos modelos autoregressivos a dados estacionários e, em seguida, são necessárias algumas restrições sobre os valores dos parâmetros. Para um modelo AR (1): -1 lt phi1 lt 1. Para um modelo AR (2): -1 lt phi2 lt 1, phi1phi2 lt 1, phi2-phi1 lt 1. Quando pge3 as restrições são muito mais complicadas. R cuida dessas restrições ao estimar um modelo.8.4 Modelos médios em movimento Em vez de usar valores passados ​​da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados ​​em um modelo similar a regressão. Y c e theta e theta e dots theta e, onde et é ruído branco. Nós nos referimos a isso como um modelo de MA (q). Claro, não observamos os valores de et, portanto, não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser pensado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel que discutimos no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, ao passo que o alavanca média móvel é usada para estimar o ciclo de tendência dos valores passados. Figura 8.6: Dois exemplos de dados de modelos em média móveis com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0.8e t-1. Direito: MA (2) com t e t - e t-1 0.8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com zero médio e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com os modelos autorregressivos, a variância do termo de erro e só alterará a escala da série, e não os padrões. É possível escrever qualquer modelo AR (p) estacionário como modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et phi13y phi12e phi1e phi1e e amptext end Provided -1 lt phi1 lt 1, o valor de phi1k ficará menor quando k for maior. Então, eventualmente, obtemos et et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Então, o modelo MA é chamado de inversível. Ou seja, podemos escrever qualquer processo de MA (q) inversível como um processo AR (infty). Os modelos invertidos não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que os tornam mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaria. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Mais uma vez, R irá cuidar desses constrangimentos ao estimar os modelos. O RIMA significa modelos de Modulação Integrada Autoregressiva Integrada. Univariado (vetor único) ARIMA é uma técnica de previsão que projeta os valores futuros de uma série inteiramente baseada em sua própria inércia. Sua principal aplicação é a previsão de curto prazo que requer pelo menos 40 pontos de dados históricos. Ele funciona melhor quando seus dados exibem um padrão estável ou consistente ao longo do tempo com uma quantidade mínima de outliers. Às vezes, chamado Box-Jenkins (após os autores originais), o ARIMA geralmente é superior às técnicas de suavização exponencial quando os dados são razoavelmente longos e a correlação entre observações passadas é estável. Se o dado for curto ou altamente volátil, algum método de suavização poderá ser melhor. Se você não tem pelo menos 38 pontos de dados, você deve considerar algum outro método que o ARIMA. O primeiro passo na aplicação da metodologia ARIMA é verificar a estacionaria. A estacionarização implica que a série permanece em um nível bastante constante ao longo do tempo. Se houver uma tendência, como na maioria das aplicações econômicas ou comerciais, seus dados NÃO são estacionários. Os dados também devem mostrar uma variância constante em suas flutuações ao longo do tempo. Isso é facilmente visto com uma série que é fortemente sazonal e cresce a um ritmo mais rápido. Nesse caso, os altos e baixos da sazonalidade se tornarão mais dramáticos ao longo do tempo. Sem essas condições de estacionaridade que estão sendo atendidas, muitos dos cálculos associados ao processo não podem ser computados. Se um gráfico gráfico dos dados indicar não-estacionária, então você deve diferenciar a série. A diferenciação é uma excelente maneira de transformar uma série não estacionária em uma estacionária. Isso é feito subtraindo a observação no período atual do anterior. Se essa transformação for feita apenas uma vez para uma série, você diz que os dados foram primeiro diferenciados. Este processo elimina essencialmente a tendência se sua série estiver crescendo a uma taxa bastante constante. Se estiver crescendo a uma taxa crescente, você pode aplicar o mesmo procedimento e diferenciar os dados novamente. Seus dados seriam então diferenciados em segundo lugar. As autocorrelações são valores numéricos que indicam como uma série de dados está relacionada a si mesma ao longo do tempo. Mais precisamente, ele mede quão fortemente os valores de dados em um número especificado de períodos separados estão correlacionados um com o outro ao longo do tempo. O número de períodos separados geralmente é chamado de atraso. Por exemplo, uma autocorrelação no intervalo 1 mede como os valores de 1 período separado estão correlacionados entre si ao longo da série. Uma autocorrelação no intervalo 2 mede como os dados separados por dois períodos estão correlacionados ao longo da série. As autocorrelações podem variar de 1 a -1. Um valor próximo a 1 indica uma alta correlação positiva, enquanto um valor próximo a -1 implica uma alta correlação negativa. Essas medidas são mais frequentemente avaliadas através de gráficos gráficos chamados correlagramas. Um correlagram traça os valores de auto-correlação para uma determinada série em diferentes atrasos. Isso é referido como a função de autocorrelação e é muito importante no método ARIMA. A metodologia ARIMA tenta descrever os movimentos em uma série de tempo estacionária como uma função do que são chamados parâmetros de média autorregressiva e móvel. Estes são referidos como parâmetros AR (autoregessivos) e MA (médias móveis). Um modelo AR com apenas 1 parâmetro pode ser escrito como. X (t) A (1) X (t-1) E (t) onde X (t) séries temporais sob investigação A (1) o parâmetro autorregressivo da ordem 1 X (t-1) a série temporal atrasou 1 período E (T) o termo de erro do modelo Isso significa simplesmente que qualquer valor X (t) determinado pode ser explicado por alguma função do seu valor anterior, X (t-1), além de algum erro aleatório inexplicável, E (t). Se o valor estimado de A (1) fosse de .30, então o valor atual da série estaria relacionado a 30 de seu valor 1 há algum tempo. Claro, a série pode estar relacionada com mais do que apenas um valor passado. Por exemplo, X (t) A (1) X (t-1) A (2) X (t-2) E (t) Isso indica que o valor atual da série é uma combinação dos dois valores imediatamente precedentes, X (t-1) e X (t-2), além de algum erro aleatório E (t). Nosso modelo agora é um modelo autoregressivo de ordem 2. Modelos médios em movimento: um segundo tipo de modelo Box-Jenkins é chamado de modelo de média móvel. Embora esses modelos pareçam muito parecidos com o modelo AR, o conceito por trás deles é bastante diferente. Os parâmetros médios em movimento relacionam o que ocorre no período t apenas com os erros aleatórios ocorridos em períodos passados, ou seja, E (t-1), E (t-2), etc., em vez de X (t-1), X ( T-2), (Xt-3) como nas abordagens autorregressivas. Um modelo de média móvel com um termo de MA pode ser escrito da seguinte forma. X (t) - B (1) E (t-1) E (t) O termo B (1) é chamado de MA da ordem 1. O sinal negativo na frente do parâmetro é usado apenas para convenção e geralmente é impresso Automaticamente pela maioria dos programas de computador. O modelo acima simplesmente diz que qualquer valor dado de X (t) está diretamente relacionado apenas ao erro aleatório no período anterior, E (t-1) e ao termo de erro atual, E (t). Como no caso de modelos autoregressivos, os modelos de média móvel podem ser estendidos para estruturas de ordem superior que cobrem diferentes combinações e comprimentos médios móveis. A metodologia ARIMA também permite a criação de modelos que incorporam parâmetros de média autorregressiva e móvel em conjunto. Estes modelos são frequentemente referidos como modelos mistos. Embora isso faça para uma ferramenta de previsão mais complicada, a estrutura pode simular a série melhor e produzir uma previsão mais precisa. Modelos puros implicam que a estrutura consiste apenas em parâmetros AR ou MA - nem ambos. Os modelos desenvolvidos por esta abordagem geralmente são chamados de modelos ARIMA porque eles usam uma combinação de autoregressivo (AR), integração (I) - referente ao processo reverso de diferenciação para produzir as operações de previsão e média móvel (MA). Um modelo ARIMA geralmente é declarado como ARIMA (p, d, q). Isso representa a ordem dos componentes autorregressivos (p), o número de operadores de diferenciação (d) e a ordem mais alta do termo médio móvel. Por exemplo, ARIMA (2,1,1) significa que você possui um modelo autoregressivo de segunda ordem com um componente de média móvel de primeira ordem, cuja série foi diferenciada uma vez para induzir a estacionaria. Escolhendo a Especificação Direita: O principal problema na caixa clássica da Caixa-Jenkins está tentando decidir qual a especificação ARIMA para usar - isto é. Quantos parâmetros AR e ou MA devem incluir. Isto é o que muito de Box-Jenkings 1976 foi dedicado ao processo de identificação. Dependia da avaliação gráfica e numérica da autocorrelação da amostra e das funções de autocorrelação parcial. Bem, para os seus modelos básicos, a tarefa não é muito difícil. Cada um tem funções de autocorrelação que se parecem de uma certa maneira. No entanto, quando você aumenta a complexidade, os padrões não são facilmente detectados. Para tornar as questões mais difíceis, seus dados representam apenas uma amostra do processo subjacente. Isso significa que erros de amostragem (outliers, erro de medição, etc.) podem distorcer o processo de identificação teórica. É por isso que a modelagem ARIMA tradicional é uma arte e não uma ciência.

Comments

Popular Posts